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Abstract
We examine the multiple Hamiltonian structure and construct a symplectic
realization of the Volterra model. We rediscover the hierarchy of invariants,
Poisson brackets and master symmetries via the use of a recursion operator.
The rational Volterra bracket is obtained using a negative recursion operator.

PACS numbers: 02.30.Ik, 02.20.Qs, 45.20.Jj

1. Introduction

The Volterra model, also known as the KM system, is defined by

u̇i = ui(ui+1 − ui−1) i = 1, 2, . . . , n, (1)

where u0 = un+1 = 0. It was studied originally by Volterra in [17] to describe population
evolution in a hierarchical system of competing species. It was first solved by Kac and van
Moerbeke in [13], using a discrete version of inverse scattering due to Flaschka [10]. In
[15], Moser gave a solution of the system using the method of continued fractions and in the
process he constructed action-angle coordinates. Equations (1) can be considered as a finite-
dimensional approximation of the Korteweg–de Vries (KdV) equation. They also appear in
the discretization of conformal field theory; the Poisson bracket for this system can be thought
as a lattice generalization of the Virasoro algebra [8]. The variables ui are an intermediate
step in the construction of the action-angle variables for the Liouville model on the lattice.
This system has a close connection with the Toda lattice,

ȧi = ai(bi+1 − bi) i = 1, . . . , n − 1

ḃi = 2
(
a2

i − a2
i−1

)
i = 1, . . . , n.

In fact, a transformation of Hénon connects the two systems:

ai = − 1
2

√
u2iu2i−1 i = 1, . . . , n − 1

bi = 1
2 (u2i−1 + u2i−2) i = 1, . . . , n.
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We note that the number of variables for the Toda lattice is odd and therefore we restrict our
attention to the Volterra system with an odd number of variables. The Volterra system is usually
associated with a simple Lie algebra of type An. Bogoyavlensky generalized this system for
each simple Lie algebra and showed that the corresponding systems are also integrable. See
[1, 2] for more details. The relation between Volterra and Toda systems is also examined
in [6].

The Hamiltonian description of system (1) can be found in [7] and [3]. We will follow
[3] and use the Lax pair of that reference. The Lax pair is given by

L̇ = [B,L],

where

L =




u1 0
√

u1u2 0 . . . 0

0 u1 + u2 0
√

u2u3
...

√
u1u2 0 u2 + u3

. . .

0
√

u2u3

... . . .
√

un−1un

un−1 + un 0
√

un−1un 0 un




and

B =




0 0 1
2

√
u1u2 0 . . . 0

0 0 0 1
2

√
u2u3

...

− 1
2

√
u1u2 0 0

. . .

0 − 1
2

√
u2u3

... . . . 1
2

√
un−1un

0 0

− 1
2

√
un−1un 0 0




.

This is an example of an isospectral deformation; the entries of L vary over time but the
eigenvalues remain constant. It follows that the functions Hi = 1

i Tr Li are constants of
motion. We note that

H1 = 2
n∑

i=1

ui

corresponds to the total momentum and

H2 =
n∑

i=1

u2
i + 2

n−1∑
i=1

uiui+1

is the Hamiltonian.
Following [3] we define the following quadratic Poisson bracket,

{ui, ui+1} = uiui+1,
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and all other brackets equal to zero. We denote this bracket by π2. For this bracket det L is
a Casimir and the eigenvalues of L are in involution. Of course, the functions Hi are also in
involution. Taking the function

∑n
i ui as the Hamiltonian we obtain equation (1). This bracket

can be realized from the second Poisson bracket of the Toda lattice by setting the momentum
variables equal to zero [7].

In [3] one also finds a cubic Poisson bracket which corresponds to the second KdV bracket
in the continuum limit. It is defined by the formulae

{ui, ui+1} = uiui+1(ui + ui+1), {ui, ui+2} = uiui+1ui+2;
all other brackets are zero. We denote this bracket by π3. In this bracket we still have
involution of invariants. We also have Lenard-type relations of the form

π3∇Hi = π2∇Hi+1.

In [3] appears a bracket that is homogeneous of degree 1, a rational bracket constructed
using a master symmetry. This bracket, denoted by π1, has Tr L as Casimir and the Hamiltonian
is H2 = 1

2 Tr L2. The definition of the bracket is the following. We define the master symmetry
Y−1 to be

Y−1 =
n∑

i=1

fi

∂

∂ui

,

where the fi are determined recursively as follows:

f1 = −1, f2i = − u2i

u2i−1
f2i−1, f2i−1 = −f2i−2 − 1.

Taking the Lie derivative of π2 in the direction of Y−1 we obtain π1, a Poisson bracket that is
homogeneous of degree 1. For n = 5, π1 takes the form

{u1, u2} = u2 {u1, u3} = −u2 {u1, u4} = u2u4

u3
{u1, u5} = −u2u4

u3

{u2, u3} = u2 {u2, u4} = −u2u4

u3
{u2, u5} = u2u4

u3

{u3, u4} = u4 {u3, u5} = −u4 {u4, u5} = u4.

(2)

In this paper we rediscover this bracket using a recursion operator. The higher Poisson brackets
are constructed using a sequence of master symmetries Yi, i = −1, 0, 1, . . . . We define Y0 to
be the Euler vector field

Y0 =
n∑

i=1

ui

∂

∂ui

.

The explicit formula for Y1 is

Y1 =
n∑

i=1

Ui

∂

∂ui

,

where

Ui = (i + 1)uiui+1 + u2
i + (2 − i)ui−1ui.

It is easily checked that the bracket π2 is obtained from π1 by taking the Lie derivative in the
direction of Y1. Similarly, the Lie derivative of π2 in the direction of Y1 gives π3.

The brackets π1, π2 and π3 are just the beginning of an infinite hierarchy constructed in
[3] using master symmetries. We quote the result:
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Theorem 1. There exists a sequence of Poisson tensors πj and a sequence of master symmetries
Yj such that

(i) πj are all Poisson;
(ii) the functions Hi are in involution with respect to all of the πj ;

(iii) Yi(Hj ) = (i + j)Hi+j ;
(iv) LYi

πj = (j − i − 2)πi+j ;
(v) [Yi, Yj ] = (j − i)Yi+j ;

(vi) πj∇Hi = πj−1∇Hi+1, where πj denotes the Poisson matrix of the tensor πj .

In this paper we prove the results of theorem 1 using a different approach. Namely, we
construct a recursion operator in a symplectic space, define all master symmetries, invariants
and Poisson brackets using results of Magri and Oevel and then project to the space of u
variables.

2. Master symmetries and a theorem of Oevel

We recall the definition and basic properties of master symmetries following Fuchssteiner
[12]. Consider a differential equation on a manifold M defined by a vector field χ . We are
mostly interested in the case where χ is a Hamiltonian vector field. A vector field Z is a
symmetry of the equation if

[Z, χ ] = 0.

A vector field Z is called a master symmetry if

[[Z, χ ], χ ] = 0,

but

[Z, χ ] �= 0.

Master symmetries were first introduced by Fokas and Fuchssteiner in [11] in connection with
the Benjamin–Ono equation.

A bi-Hamiltonian system is defined by specifying two Hamiltonian functions H1,H2 and
two Poisson tensors π1 and π2, which give rise to the same Hamiltonian equations, namely,
π1∇H2 = π2∇H1. The notion of bi-Hamiltonian structures is due to Magri [14]. Suppose that
we have a bi-Hamiltonian system defined by the Poisson tensors π1, π2 and the Hamiltonians
H1,H2. Assume that π1 is symplectic. We define the recursion operator R = π2π

−1
1 , the

higher flows

χi = Ri−1χ1,

and the higher order Poisson tensors

πi = Ri−1π1.

For a non-degenerate bi-Hamiltonian system, master symmetries can be generated using a
method due to Oevel [16].

Theorem 2. Suppose that X0 is a conformal symmetry for both π1, π2 and H1, i.e. for some
scalars λ,µ and ν we have

LX0π1 = λπ1, LX0π2 = µπ2, LX0H1 = νH1.

Then the vector fields Xi = RiX0 are master symmetries and we have

(a) LXi
Hj = (ν + (j − 1 + i)(µ − λ))Hi+j ,

(b) LXi
πj = (µ + (j − i − 2)(µ − λ))πi+j ,

(c) [Xi,Xj ] = (µ − λ)(j − i)Xi+j .
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3. Symplectic realization

We define the following transformation from R2n to R2n−1:

u2i−1 = −epi i = 1, . . . , n,

u2i = eqi+1−qi i = 1, . . . , n − 1. (3)

The Hamiltonian in (q, p) coordinates is given by

h1 = −
n∑

i=1

epi +
n−1∑
i=1

eqi+1−qi . (4)

It is straightforward to check that Hamilton’s equations for (4) correspond in the u-space to the
KM system (1) via the mapping (3). The symplectic bracket in (q, p) coordinates corresponds
to the quadratic bracket π2. For this reason we will denote the standard symplectic bracket
in R2n by J2. Our purpose is to define a bracket J3 in R2n which is mapped to π3 under the
transformation (3). The idea of the construction is to lift the master symmetry Y1 from the
u-space up to the (q, p)-space and obtain a vector field which we denote by X1. The new
bracket J3 will be defined as the Lie derivative of J2 in the direction of X1. One possible
definition for X1 is the following:

X1 =
n∑

i=1

Ai

∂

∂qi

+
n∑

i=1

Bi

∂

∂pi

,

where

Ai = −ep1 −
i−1∑
j=2

epj + (1 − 2i) epi +
i−1∑
j=1

eqj+1−qj i = 1, 2, . . . , n,

Bi = 2i eqi+1−qi − epi + (3 − 2i) eqi−qi−1 i = 1, 2, . . . , n.

We note that in the summations if an index is not defined then we ignore that whole term.
Taking the Lie derivative of the symplectic bracket J2 in the direction of X1 we obtain the

Poisson bracket J3,

{qi, qj } = epj 1 � j � i − 1 � n − 1
{qi, pi} = −epi + eqi−qi−1 i = 1, . . . , n

{qi, pj } = eqj −qj−1 − eqj+1−qj 1 � j � i − 1
{pi, pi+1} = eqi+1−qi i = 1, . . . , n − 1.

(5)

The Jacobi identity is straightforward to check. There are four cases (three p, three q, two p
one q and two q one p). Two of the cases are trivial and the other two can be broken up to at
most five subcases.

Let J2 be the symplectic bracket with Poisson matrix

J2 =
(

0 I

−I 0

)
,

where I is the n × n identity matrix. The bracket J2 is mapped precisely to the bracket π2

under transformation (3), and J3 corresponds to π3. We define a recursion operator as follows:

R = J3J
−1
2 .

This operator raises degrees and we therefore call it the positive Volterra operator. In (q, p)

coordinates, the symbol χi is a shorthand for χhi
. It is generated, as usual, by

χi = Ri−1χ1.
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For example,

h2 = 1

2

n∑
i=1

e2pi +
1

2

n−1∑
i=1

e2(qi+1−qi ) −
n−1∑
i=1

(epi + epi+1) eqi+1−qi.

Note that h2 corresponds under mapping (3) to a constant multiple of H2 = 1
2 Tr(L)2. In a

similar fashion we obtain the higher order Poisson tensors

Ji = Ri−2J2 i = 3, 4, . . . .

We finally define the conformal symmetry

X0 =
n∑

i=1

i
∂

∂qi

+
n∑

i=1

∂

∂pi

.

The Poisson tensors J2, J3 and the functions h1, h2 define a bi-Hamiltonian pair, namely,
J2∇h2 = J3∇h1. We note that J3 is automatically compatible with J2 since it is constructed
using a master symmetry (see [4], p 5518). It is straightforward to verify that

LX0J2 = 0, LX0J3 = J3, LX0(h1) = h1.

Consequently, X0 is a conformal symmetry for J2, J3 and h1. The constants appearing in
Oevel’s theorem are λ = 0, µ = 1 and ν = 1. Therefore, we end up with the following
deformation relations:

[Xi, hj ] = (i + j)hi+j , LXi
Jj = (j − i − 2)Ji+j , [Xi,Xj ] = (j − i)Xi+j .

Projecting to the u-space under mapping (3) we obtain relations (iii)–(v) of theorem 1.
Statements (i) and (ii) of theorem 1 follow easily from properties of the recursion operator.

4. The negative Volterra hierarchy

In this section we describe how the first bracket π1 is obtained via the use of the negative
operator. The negative operator was introduced in [5] in connection with the Toda lattice. We
define J1 as follows:

J1 = NJ2, where N = J2J
−1
3 .

We then project the J1 bracket to the u-space using transformation (3) to obtain the bracket
π1. We illustrate in detail the case n = 5.

We consider the Volterra model in R6 with coordinates (q1, q2, q3, p1, p2, p3).
Transformation (3) is given by

u1 = −ep1 , u3 = −ep2 , u5 = −ep3 , u2 = eq2−q1 , u4 = eq3−q2 . (6)

J2 =
(

0 I3

−I3 0

)
,

where I3 is the 3 × 3 identity matrix, and J3 is the Poisson matrix (5),

J3 =




0 −ep1 −ep1 −ep1 0 0

ep1 0 −ep2 −eq2−q1 −ep2 + eq2−q1 0

ep1 ep2 0 −eq2−q1 eq2−q1 − eq3−q2 −ep3 + eq3−q2

ep1 eq2−q1 eq2−q1 0 eq2−q1 0

0 ep2 − eq2−q1 −eq2−q1 + eq3−q2 −eq2−q1 0 eq3−q2

0 0 ep3 − eq3−q2 0 −eq3−q2 0




.
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One can find the matrix J1,

(J1)1,2 = 1

D
ep1(ep3 − eq3−q2) (J1)1,3 = 1

D
ep1(ep2 − eq3−q2)

(J1)1,4 = 1

D
eq2−q1 [(ep3 − eq3−q2) − ep2 ep3 ] (J1)1,5 = 1

D
ep1 eq3−q2

(J1)1,6 = − 1

D
ep1 eq3−q2 (J1)2,3 = 1

D
ep1 ep2

(J1)2,4 = 1

D
eq2−q1(ep3 − eq3−q2) (J1)2,5 = 1

D
ep1(eq3−q2 − ep3)

(J1)3,4 = − 1

D
eq2−q1 eq3−q2 (J1)3,5 = 1

D
ep1 eq3−q2

(J1)3,6 = − 1

D
ep1 ep2 (J1)4,5 = − 1

D
ep3 eq2−q1

(J1)4,6 = 1

D
eq2−q1 eq3−q2 (J1)5,6 = − 1

D
ep1 eq3−q2 ,

where D = ep1 ep2 ep3 . We note that D corresponds in the u-space to the square root of det(L).
The projection of J1 to the u-space under transformation (6) is precisely the bracket π1 given
in equation (2), e.g.

{u1, u2} = {−ep1 , eq2−q1} = −ep1 eq2−q1({p1, q2} − {p1, q1})
= − ep1 eq2−q1

ep1 ep2 ep3
[eq2−q1(−ep3 + eq3−q2) + eq2−q1 ep3 − eq2−q1 eq3−q2 − ep3 ep2 ]

= eq2−q1 = u2.

Using the recursion operator N we can construct the negative Volterra hierarchy, i.e.
Ji−1 = NJi, i = 1, 0,−1,−2, . . . . Using the same method of proof as in [5] one can
easily show that the conclusions of theorem 1 hold for any integer value of the index. For
example, for i = 1 we obtain a Poisson bracket J0 which projected to the u-space gives a
rational Poisson bracket of degree zero, π0. In the case of the Volterra model in R4 one can
find that π0 is given by

{u1, u2} = u2(u2 + u3)

u1u3
, {u3, u1} = u2(u1 + u2 + u3)

u1u3
, {u2, u3} = u2(u2 + u1)

u1u3
.

5. Conclusions

This paper contains three main ingredients. The first consists of the odd-dimensional space
of the Volterra model together with its multiple Hamiltonian structures. The results of this
paper are not new but they are derived here using an entirely new approach. The quadratic and
cubic brackets π2 and π3 are contained implicitly in the book of Fadeev and Takhtajan [7].
The rational, linear bracket π1 and the rest of the hierarchy were first computed in [3] using
master symmetries.

The second part is a realization of the model in a symplectic space. We define a
Hamiltonian system in (q, p) coordinates, and compute master symmetries and a second
Poisson structure which is used to define a bi-Hamiltonian pair. We then use the resulting
recursion operator to produce the infinite hierarchy. In order to obtain a Poisson bracket that
corresponds to π1 we make use of the negative recursion operator. All the results in this part
are new.

The third part is a mapping which connects the two spaces and the two systems. It is
a mapping from an even 2n dimensional, symplectic space to an odd (2n − 1)-dimensional
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space. This symplectic realization is also new. We have to mention that there is another
symplectic realization of the model which goes back to Volterra. However, the map is from a
4n − 2 to a 2n − 1 space, see e.g. [9]. Due to the big difference in dimension the results of the
present paper will be difficult to duplicate using that particular realization.
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